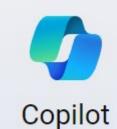
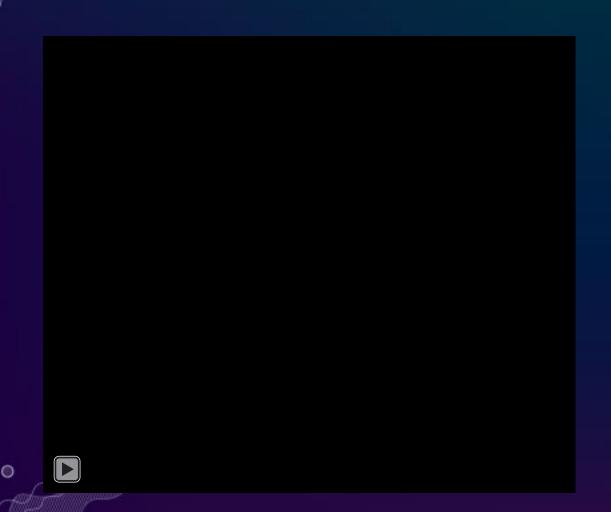
ChatGPT x GIS Exploring Conversational GIS Workflows


Zach Robinson | Sr GIS Analyst, County of Santa Clara Planning & Development Steve Borgstrom | GIS Analyst, County of Santa Clara Planning & Development

Conversational Al

- Not new just an evolution
 - Early 90s chatbots
 - Voice assistants (Siri)
 - Customer Support chatbots
- Machine Learning and Natural Language Processing
 - Contextual understanding
 - Human-like responses
 - Learning on the fly
- Handful of major players today although most are familiar with ChatGPT



with **b** Bing Chat

ChatGPT

- Launched Nov 2022
- Fastest growing software company in 2023
- Use cases
 - Research content
 - Code/debug programs
 - Compose music, write content

Understand Concepts

. 0

Understand Concepts

Suggesting Workflows

. 0

Understand Concepts

Suggesting Workflows

Troubleshoot Issues

. 0

Understand Concepts

Suggesting Workflows

Troubleshoot Issues

Writing & Debugging Code

DEMOS

J.

. 0

Address Correction and Standardization

Please correct and verify the following addresses, delivering the results in CSV format. Add information where necessary

Here are the corrected and verified addresses in CSV format:

plaintext

\$

Copy code

Address, City, State, ZIP Code 773 NEWELL RD, PALO ALTO, CA, 94303-2850 392 WAVERLEY ST, SUNNYVALE, CA, 94086-6055 1367 RAMON DR, SUNNYVALE, CA, 94087 181 RADFORD DR, CAMPBELL, CA, 95008 722 PURITAN CT, SAN JOSE, CA, 95123-4641 370 RUCKER AVE, MORGAN HILL, CA, 95020-9251

Coordinate Conversion

Convert the following coordinates into decimal degrees. Deliver the results as CSV

34° 04' 25" N, 118° 14' 39" W 37° 46' 30" N, 122° 25' 11" W 33° 45' 02" N, 118° 23' 40" W 36° 36' 43" N, 121° 54' 35" W 38° 25' 13" N, 122° 42' 59" W 34° 24' 56" N, 119° 42' 01" W 40° 44' 25" N, 124° 05' 29" W 32° 43' 18" N, 117° 09' 24" W 35° 17' 47" N, 120° 39' 33" W 39° 16' 18" N, 120° 40' 38" W \$

Here are the given coordinates converted into decimal degrees and delivered in CSV format:

Latitude,Longitude 34.0736,-118.2442 37.7750,-122.4197 33.7506,-118.3945 36.6120,-121.9097 38.4203,-122.7164 34.4156,-119.7003 40.7403,-124.0914 32.7217,-117.1567 35.2964,-120.6592 39.2717,-120.6772

Symbology: Colors

I need a palette of five colors, preferably pastels, that maximize the differences between each. These colors are to be used for symbology on a map. Deliver the colors with names and hex codes.

Symbology: Colors

•

I need a palette of six colors for use in symbolizing features on a map. They should be easy for color blind readers to differentiate.

Creating a palette that is easily distinguishable for color-blind readers is essential for $\Box \ \Box \ \nabla$ inclusive design. Here's a palette of six colors that are distinct and should be easy to differentiate for people with color vision deficiencies:

- 1. Blue
 - Hex Code: #3498DB
- 2. Green
 - Hex Code: #2ECC71
- 3. Orange
 - Hex Code: #E67E22

- 4. Purple
 - Hex Code: #9B59B6
- 5. **Red**
 - Hex Code: #E74C3C
- 6. **Teal**
 - Hex Code: #1ABC9C

This palette includes a variety of colors, and their differences in hue and lightness should make them easily distinguishable for color-blind readers.

Symbology: Colors

import arcpy import random

```
# Get the current map and the "Cities" layer
aprx = arcpy.mp.ArcGISProject("CURRENT")
map = aprx.listMaps()[0] # Assuming the first map in the project
cities_layer = map.listLayers("Cities")[0] # Assuming "Cities" is the name of the layer
```

Get a list of unique values in the "NAME" field unique_values = set(row[0] for row in arcpy.da.SearchCursor(cities_layer, "NAME"))

```
# Create a symbol dictionary with random fill colors and black outline
symbol_dict = {}
for value in unique_values:
    symbol = arcpy.symbology.Symbol()
    symbol.color = [random.random(), random.random(), 1] # Random RGBA color
    symbol.outlineColor = [0, 0, 0, 1] # Black outline
    symbol.outlineWidth = 0.5 # 0.5 points outline width
```

```
symbol_dict[value] = symbol
```

Apply symbology to the "Cities" layer

arcpy.management.ApplySymbologyFromLayer(cities_layer, "Path\\to\\your\\LayerFile.lyrx") ** Update the layer file path

Update the layer's symbology with the symbol dictionary

for value in unique_values:

- ...cities_layer.symbology.setRenderer("UniqueValueRenderer")
- ...cities_layer.symbology.addUniqueValueInfo(value, "NAME", symbol_dict[value])

Refresh the display
arcpy.RefreshActiveView()

Limitations & Considerations

- Can and DOES make mistakes
 - Easy to interpret as fact
 - Overconfident
- Should only be used as a supplement, never a replacement
- Ethical Considerations
 - Current discussion in many industries
 - School/employer restrictions
- Privacy Considerations

Free ChatGPT (v3.5) limited to knowledge up to January 2022